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Abstract 

Artificial intelligence (AI) is a current trend in computer science, which extends itself its amazing 

capacities to other technologies such as mechatronics and robotics. Going beyond technological 

applications, the philosophy behind AI is that there is a vague and potential convergence of artificial 

manufacture and natural world although the limiting approach may be still very far away, but why? 

The implicit problem is that Darwin theory of evolution focuses on natural world where breeding 

conservation is the cornerstone of the existence of creature world but there is no similar concept of 

breeding conservation in artificial world whose things are created by human. However, after 

developing for a long time until now, AI issues an interesting concept of generation in which artifacts 

created by computer science can derive their new generations inheriting their aspects / characteristics. 

Such generated artifacts make us look back on offsprings by the process of breeding conservation in 

natural world. Therefore, it is possible to think that AI generation, which is a recent subject of AI, is a 

significant development in computer science as well as high-tech domain. AI generation does not help 

us to reach near biological evolution even in the case that AI can combine with biological technology 

but, AI generation can help us to extend our viewpoint about Darwin theory of evolution as well as 

there may exist some uncertain relationship between man-made world and natural world. Anyhow AI 

generation is a current important subject in AI and there are two main generative models in computer 

science: 1) generative model that applies large language model into generating natural language texts 

understandable by human and 2) generative model that applies deep neural network into generating 

digital content such as sound, image, and video. This technical report focuses on deep generative 

model (DGM) for digital content generation, which is a short summary of approaches to implement 

DGMs. Researchers can read this work as an introduction to DGM with easily understandable 

explanations. 

 

Keywords: generative artificial intelligence, deep neural network, deep generative model, data 

generation. 

 

 

1. INTRODUCTION TO DEEP GENERATIVE MODEL (DGM) 

By informal statement, generative artificial intelligence (GenAI) applications aim to 

reproduce original artifacts such as images, sounds, music, texts, and speeches into a new 

artifact with some changes. The problem is that reproduction or generation, which is not 

duplication, indeed derives a new piece of content which is large or small from whole content 

of the original artifacts. For example, given a smiling face of a specific person, GenAI 

application will generate a crying face of the same person. As a subdomain of GenAI, deep 
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generative model (DGM) applies deep neural network (DNN) into generating artifacts but 

many deep generative models (DGMs) are also relevant to applied statistics. Note, DNN is an 

artificial neural network having many hidden layers, besides input layer and output layer. 

Training deep neural network or learning deep neural network is known as deep learning. 

Given random variable vector x = (x1, x2,…, xm)T presenting any digital artifact or any digital 

data such as image and sound, let P(x) be probability density function (PDF) of x but it is 

difficult to estimate such probabilistic distribution P(x) because data x is complicated with 

suppose that x belongs to the real field Rm where m is high dimension and so, P(x) is called 

intractable PDF. Suppose there is another random variable vector z = (z1, z2,…, zn)
T belonging 

to the real field Rn where n is low dimension (n < m) so that PDF of z denoted P(z) is 

tractable and it is possible to understand P(z). Moreover, it is most important that suppose 

there is a function g(z | Φ) = x that maps tractable data z to intractable data x where Φ is 

parameter of such mapping function. For some illustrations or examples in this report, 

random variable vector x is flattened from two-dimension image. As a convention, the 

function g(z | Φ) = x is called generator of x and its parameter Φ is called generator parameter 

(Ruthotto & Haber, 2021, p. 2). 

 
Where Z and X are domains of tractable data x and intractable data z with note that Z is called 

latent space and X is called sample space by convention. When Z is called latent space, 

tractable PDF P(z) is called latent distribution. Because g(z | Φ) is essentially vector-by-

vector function whose input and output are vectors, it should have denoted as g(z | Φ). 

However, it is still denoted g(z | Φ) in context DNN because there are two reasons: 1) g(z | Φ) 

is not bijection and 2) the output x of g(z | Φ) can be considered as scalar variable x 

corresponding to an output neuron of output layer in neural network. Therefore, g(z | Φ) also 

implies a vector-by-scalar function whose first-order derivative can be considered as gradient 

vector although the first-order derivative of vector-by-vector function g(z | Φ) is Jacobian 

matrix. Note, in mathematical, the first-order derivative of scalar-by-vector function is called 

gradient vector and the first-order derivative of vector-by-vector function is called Jacobian 

matrix. 

The ultimate purpose of any DGM is to determine parameter Φ because generator g(z | Φ) 

is defined based on Φ. In DGM, generator g(z | Φ) is constructed by a deep neural network 

(DNN) and its parameter Φ is essentially weights of such DNN. When g(z | Φ) is constructed 

by DNN, g(z | Φ) is not totally equal to x as g(z | Φ) = x but it is expected that g(z | Φ) is 

approximated to x in practice: 

 
Note that there are many DGMs and some of them do not require explicit definition of the 

PDF P(z) of tractable data z but how to estimate generator parameter Φ for determining 

generator g(z | Φ) = x is always concerned. When g(z | Φ) was determined, we can easily 

randomize some random tractable data z’ according to the known tractable PDF P(z) and then 

it is totally possible to generate new artifact x’ by x’ = g(z’ | Φ) so that x’ is generated data / 

derived data of original intractable data x with expectation that probability distribution of x’ 

is approximate to the true distribution P(x) of x. The process to randomize z’ is called 

sampling tractable data (z). When g(z | Φ) is modeled by a DNN, how to estimate parameter 

Φ is essentially to train such DNN and hence, the DNN is denoted as generator function g(z | 

Φ) for a convention, which is called generator DNN g(z | Φ). Here we identify generator 

function with DNN. 

Intractable PDF P(x) of x is specified (Ruthotto & Haber, 2021, p. 3) based on law of 

total probability as follows: 
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Where Pg(x | z) is conditional PDF of x given z, which implies that Pg(x | z) depends on 

generator g(z | Φ) too because random variable x inside condition PDF Pg(x | z) is generated 

from z. Note, notation P(.) denotes probability distribution or probability density function 

(PDF) in this research. Therefore, it is possible to denote such conditional PDF as P(x | Φ, z). 

 
Such that: 

 
(1.1) 

This implies intractable PDF P(x) can be known via tractable PDF P(z) and conditional PDF 

P(x | Φ, z); however it is really difficult to compute P(x) due to complication of the integral 

but this difficulty is unimportant because the purpose of DGM is to estimate generator g(z | 

Φ). As a convention, the conditional PDF P(x | Φ, z) is called likelihood P(x | Φ, z). Indeed, 

P(x | Φ, z) is likelihood function of intractable data x given tractable data z, which indicates 

how close generated data x’ = g(z | Φ) to x. In practice tractable PDF P(z) is predefined and 

likelihood P(x | Φ, z) is determined based on generator DNN g(z | Φ). For instance, P(x | Φ, z) 

is assumed to be normal distribution (Gaussian distribution) with mean μ and variance σ2 in 

popular as follows (Ruthotto & Haber, 2021, p. 3): 

 
Let μ = 0 and σ2=1 for optimization, we have: 

 
Where notation ||.|| denotes norm of vector. For instance, Euclidean norm of intractable data x 

is: 

 
That tractable PDF P(z) is predefined (constant with regard to Φ and x) and likelihood P(x | 

Φ, z) is assumed to distribute normally indicates that intractable PDF P(x) is implied by the 

simpler conditional PDF P(x | Φ, z) with support of generator DNN g(z | Φ); in other words, 

P(x | Φ, z) is probability distribution of x from viewpoint of DNN g(z | Φ) indeed where z is 

totally determined in latent space Z and P(x | Φ, z) is really simpler with support of DNN g(z 

| Φ). Because how to determine generator g(z | Φ) is to estimate parameter Φ, it is easy to 

calculate Φ as maximizer of likelihood P(x | Φ, z), which is the optimization problem as 

follows: 

 (1.2) 

Taking natural logarithm of likelihood P(x | Φ, z) aims to easily determine Φ by maximizing 

the log-likelihood function log(P(x | Φ, z)) as follows: 

 
Note, 

 
Let μ = 0 and σ2=1 for optimization, we have: 

 
This implies the minimization problem as follows: 
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As a result, the estimation of generator parameter Φ based on maximum likelihood estimation 

(MLE) with assumption of normal distribution of generator g(z | Φ) turns back minimization 

of error function ½||g(z | Φ) – x||2 which is popular technique in learning DNN by 

backpropagation algorithm because ½||g(z | Φ) – x||2 is, indeed, quadratic error function in 

neural network where g(z | Φ) and x are output and real output of a neuron, respectively with 

note that the output g(z | Φ) is calculated by propagation rule and the real output x is from 

training data. In other words, MLE is entry point to estimate generator parameter Φ which is 

weights of DNN g(z | Φ) that is learned fully by backpropagation algorithm (Nguyen, 2023, 

pp. 8-20). Therefore, please pay attention to the association of MLE and backpropagation 

algorithm for determining totally generator g(z | Φ), in which g(z | Φ) and x are output at real 

output of neurons at the output layer of DNN so that backpropagation algorithm can be 

applied successively. Note, error function is also called loss function. Backpropagation 

algorithm is often associated with stochastic gradient descent (SGD) method to optimize loss 

function. 

Let ∇P(x | Φ, z) be gradient of likelihood P(x | Φ, z) which is first-order derivative of P(x 

| Φ, z) with regard to parameter Φ where x and z are samples as follows: 

 
Stochastic gradient descent (SGD) method (Nguyen, 2023, pp. 22-27) estimates Φ by 

iterative process to update successively Φ at every iteration as follows: 

 
Where 0 < γ ≤ 1 is learning rate. SGD, which is an iterative process, pushes candidate 

solution at each iteration along the direction which is opposite to gradient of target function 

for minimization or has the same direction to gradient of target function for maximization 

with note that the step length is represented by learning rate. In practice, likelihood P(x | Φ, z) 

is replaced by its natural logarithm as follows: 

 (1.3) 

Where ∇P(x | Φ, z) is gradient of the log-likelihood function logP(x | Φ, z) with regard to Φ. 

Note the estimation equation above mentions maximization problem according to MLE 

method and hence, if error function denoted ε(x | Φ, z) which is the function related to g(z | Φ) 

and x like ε(x | Φ, z) = ½||g(z | Φ) – x||2 aforementioned, then SGD modifies a little bit the 

estimation equation as follows: 

 (1.4) 

Where ∇ε(x | Φ, z) is gradient of error ε(x | Φ, z). 

 
The main difference between maximizing likelihood P(x | Φ, z) and minimizing error ε(x | Φ, 

z) is the changing from the sign “+” regarding maximization problem to the sign “–” 

regarding minimization problem, which is the essence of gradient descent method. In the 

example of assuming normal distribution, likelihood maximization is the same to error 

minimization but likelihood maximization gives broader applications to estimate generator 

parameter Φ within context of DNN along with backpropagation algorithm to train DNN. 

Besides, it is possible to consider error function is the minus opposite of likelihood function: 

 
It is better that error is the minus opposite of log-likelihood function: 

 
Moreover, there many ways to define likelihood and error and so, the way to define them will 

contribute to form a concrete DGM, besides how to specify and design generator DNN g(z | 

Φ). When Φ is weight vector consisting of many weights of entire DNN, only elemental sub-
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weights at the output layer are estimated by SGD which maximizes likelihood or minimizes 

error: 

 
Or 

 
Then backpropagation algorithm continues to update remaining sub-weights at hidden layers 

based on such determined sub-weights at the output layer. Therefore, for convenience, we 

only focus on likelihood maximization or error minimization and parameter Φ represents 

entire weights of DNN with assertion that backpropagation algorithm is always feasible. It 

means that there are two important equivalent estimation equations as follows: 

 

 
In similar to: 

 
When DGM is trained with big data, training data is fed to DGM at very time point i as a pair 

d(i) = (x(i), z(i)) and therefore, a set of pairs over N time points is called epoch. As a convention, 

epoch of size N is denoted as D = (d(1) = (x(1), z(1)), d(2) = (x(2), z(2)),…, d(N) = (x(N), z(N))). An 

interesting result from SGD is that DGM can be learned with epoch D without significant 

change as follows: 

 
Therefore, training data is counted according to every epoch D instead of every pair (x, z) so 

that D is fed to SGD at every time point k. Moreover, it is essential that SGD aims to update 

current parameter at current iteration based on previous parameter at previous iteration. 

Exactly, let Φ(k+1) be generator parameter at the (k+1)th iteration, then Φ(k+1) is calculated 

based on previous generator parameter Φ(k) at the kth iteration as follows: 

 
The equation above is the most precise equation for parameter estimation with SGD, which is 

called epoch estimation with note that SGD is an iterative process. It can also be replaced by 

following equations: 

 

 
The first equation 

 

(1.5) 

Which is most popular. Moreover, the index k indicates time point as well as iteration of SGD. 

If learning rate γ is varied at every iteration as γ(k), we have: 

 
There are two problems related to construct a DGM: 1) how to define likelihood or error to 

train generator DNN g(z | Φ) and 2) how to define tractable PDF P(z) which implies the way 



34 

 

to randomize z. The second problem relates to assert qualification of random data z’ and 

hence, the second problem is stated as qualification problem of how to qualify random data. 

Therefore, the two problems of constructing DGM are 1) how to train generator DNN g(z | Φ) 

and 2) how to qualify such training task which often relates to another optimization task or 

another training task. Some basic principles related to DGM are introduced in this section but 

the two problems cannot be mentioned because there are many specific DGMs which have 

own specifications. Anyhow generator likelihood P(x | Φ, z) based on definition of generator 

g(z | Φ) is always important regardless that if it is specified explicitly and thus, suppose it was 

defined, then SGD is favorite method to optimize it. As an example aforementioned, suppose 

P(x | Φ, z) distributes normally with mean μ and variance σ2 in some DGM as follows 

(Ruthotto & Haber, 2021, p. 3): 

 
Generator log-likelihood is natural logarithm of generator likelihood P(x | Φ, z): 

 
Gradient of this log-likelihood with regard to Φ is: 

 
Where dg(z | Φ) / dΦ is differential of g(z | Φ) with regard to Φ. Let μ = 0 and σ2=1 for 

optimization, we have: 

 
As usual, estimation equation resulted from SGD is: 

 
There is a question that how to calculate the differential dg(z | Φ) / dΦ. Indeed, it is not 

difficult to calculate it in context of neural network associated with backpropagation 

algorithm so that the last output layer as well as last neuron o of DNN g(z | Φ) is acted by 

activation function a(.) as follows: 

 

 
Where i is input of the last layer o and weight parameter w is a part of entire parameter Φ and 

hence, we need to focus on calculating differential da(o) / dw which is equivalent to 

differential dg(z | Φ) / dΦ so that backpropagation algorithm will solve remaining parts of 

entire parameter Φ. 

 
Indeed, we have: 

 
Note, the subscript “T” denotes transposition operator of vector and matrix in which row 

vector becomes column vector and vice versa. It is easy to calculate the derivative a’(o) when 

activation function was specified, for instance, if a(o) is sigmoid function, we have: 

 

 
In practice, y is replaced by a(y) in order to prevent o from being out of space: 
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As a result, we have: 

 
For fast computation, it is possible to set the derivative a’(o) to be small enough constants 

like 1 such that dg(z | Φ) / dΦ = iT. 

Suppose some other DGM assumes that x is binary (x = 0 or x = 1) and follows Bernoulli 

(Ruthotto & Haber, 2021, p. 3) and so, its generator DNN g(z | Φ) derives values in interval 

[0, 1]. In other words, image of g(z | Φ) is the real number interval [0, 1], which leads to a 

specification that g(z | Φ) is probability of the event x=1 with note that x is scalar variable (x) 

for convenience: 

 
Because g(z | Φ) becomes a (scalar) random variable whose value is probability, it is possible 

to identify g(z | Φ) with its parameter Φ as a convention:  

 
Given N trials with binary values of x, let N(x) be the number of event x=1 among N trials, 

then generator likelihood P(x | Φ, z) is specified according to Bernoulli distribution as 

follows: 

 
The generator log-likelihood is: 

 
Gradient of the generator log-likelihood with regard to Φ is: 

 
As a result, estimation equation resulted from SGD is: 

 
Although normal distribution and Bernoulli distribution are two popular distributions to 

specify generator likelihood P(x | Φ, z), there are other specifications which depend on 

specific DGM. 

Given epoch D = (d(1) = (x(1), z(1)), d(2) = (x(2), z(2)),…, d(N) = (x(N), z(N))) implies that the 

epoch is created or sent by equilateral distribution 1/N but in general case, D can follow an 

arbitrary distribution denoted by PDF P(d), which makes the optimization problem and the 

SGD estimation changed a little bit by theoretical expectation given distribution P(d). 

 

 
Where, 

 
However, there is no significant change in aforementioned practical technique to estimate 

parameters. 

Turning back the assumption that generator likelihood P(x | Φ, z) distributes normally 

with mean μ and variance σ2 in some DGM as follows (Ruthotto & Haber, 2021, p. 3): 

 
This assumption is not totally exact because the distribution above mentions the error g(z | Φ) 

– x between generated data g(z | Φ) and real data x. Exactly, generator likelihood P(x | Φ, z) 
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is defined as distribution of the error ε = g(z | Φ) – x and such error distribution is assumed to 

follow normal distribution with mean μ and variance σ2. 

 
Therefore, setting error mean and error variance to be zero and one as μ = 0, σ2 = 1 is for best 

optimization because of smallest error mean 0 but the setting is not totally diverse in data 

generation. 

 
When learning generator DNN by backpropagation algorithm associated with SGD, it is 

possible to estimate dynamically μ and σ2 by maximum likelihood estimation (MLE) method. 

Given epoch D = (d(1) = (x(1), z(1)), d(2) = (x(2), z(2)),…, d(N) = (x(N), z(N))), error mean and error 

variance are estimated as follows: 

 

(1.6) 

When error mean and error variance are dynamically estimated instead of fixing them by zero 

and unit, generator DNN g(z | Φ) may produce new data in high diversity, which is similar to 

add noises to generated data. In other words, estimation of error mean and error variance 

based on epoch makes the data generation more diverse because z may be randomized in 

interval [0, 1] although DGMs try to diversify z or x like Variational Autoencoders (VAE) and 

Generative Adversarial Network (GAN). Note, if z is randomized only in interval [0, 1], 

generated data x’ = g(z | Φ) may not be different much from sample x in epoch in case that 

error mean μ and error variance σ2 are fixed by 0 and 1. However, quality of data generation 

is the best with zero error mean 0. 

Recall that the two problems of constructing DGM are 1) how to train generator DNN g(z 

| Φ) and 2) how to qualify such training task which often relates to another optimization task 

or another training task. The first problem relates to how to establish generator likelihood P(x 

| Φ, z) which is the probability density function (PDF) of intractable x given tractable data z 

and this establishment is based on generator DNN g(z | Φ). However, there are some DGMs 

do not specify explicitly the density function P(x | Φ, z), which is cause of the fact that there 

are two DGM approaches: 1) DGM specifies explicitly generator PDF P(x | Φ, z) and 2) vice 

versa. In group of explicit PDF approach, there are two built-in approaches: 1) tractable 

density DGM specifies explicitly well-known distributions for generator likelihood and 2) 

approximate density DGM tries to estimate approximately generator PDF P(x | Φ, z) or 

derive other PDF that is similar to P(x | Φ, z). In general, there are three main approaches for 

constructing DGM such as tractable density DGM, approximate density DGM, and implicit 

density DGM which are mentioned in next sections. Following figure depicts taxonomy of 

DGM (Oussidi & Elhassouny, 2018, p. 7) by Goodfellow. 
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Figure 1.1. Taxonomy of DGM 

Especially, if data is image, there is another categorization way that there are two main 

approaches: 1) pixel density approach tries to model pixel distribution and 2) block density 

approach tries to model entire image distribution as any data distribution. In other words, 

likelihood P(x | Φ, z) is defined based on probabilistic distribution of pixels where x is 

considered as set of pixels according to pixel density approach. On the other hand, block 

density approach considers likelihood P(x | Φ, z) is PDF of a block or entire image (unified 

big block) where x is considered as any arbitrary data. As usual, pixel density approach 

belongs to tractable density approach of the first categorization. 

 

2. TRACTABLE DENSITY DGM 
According to tractable density approach, DGMs specify explicitly generator PDF P(x | Φ, z) 

with note that PDF is abbreviation of probability density function. Recall that the two 

problems of constructing DGM are 1) how to train generator DNN g(z | Φ) and 2) how to 

qualify such training task which often relates to another optimization task or another training 

task. However, the two problems are merged into the first problem which is to train g(z | Φ) 

according to normalizing flow technique in which g(z | Φ) is invertible given tractable data z 

and intractable data x have the same dimension n. Therefore, latent space Z and sample space 

X are the same with dimension n. As a convention, g–1(x | Φ) is called inversed generator. 

 
(2.1) 

Where, 

 

 

 

 
Note, the subscript “T” denotes transposition operator of vector and matrix in which row 

vector becomes column vector and vice versa. Because g(z | Φ) is essentially vector-by-

vector function whose input and output are vectors, it should have denoted as g(z | Φ), 

especially, when g(z | Φ) here is bijection. However, it is still denoted g(z | Φ) for 

convenience. Therefore, the first-order derivative of vector-by-vector function g(z | Φ) here is 

Jacobian matrix but is stilled called gradient. Note, in mathematical, the first-order derivative 

of scalar-by-vector function is called gradient vector and the first-order derivative of vector-

by-vector function is called Jacobian matrix. 

As a result, normalizing flow (NL) technique focuses on maximizing intractable PDF 

P(x) now called sample PDF or sample likelihood rather than maximizing generator 

likelihood P(x | Φ, z) because P(x) is now proportional to tractable PDF P(z) and P(x) is 

stronger than P(x | Φ, z). When P(x) has generator parameter Φ, it is denoted as P(x |  Φ). 

According to applied statistics literature, sample likelihood P(x |  Φ) is determined based on 

tractable PDF P(z) and generator g(z | Φ) as follows (Ruthotto & Haber, 2021, p. 7): 
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 (2.2) 

Where |.| or det(.) denotes determinant of square matrix with note that the gradient ∇xg
–1(x | Φ) 

of the inverse g–1(x | Φ) is Jacobian matrix which is the first-order derivative of g–1(x | Φ) 

with regard to x. As a convention, ∇xg
–1(x | Φ) is called inversed gradient because ∇xg

–1(x | Φ) 

is the first-order derivative of inversed generator g–1(x | Φ) with regard to x. 

 
The equation of sample likelihood P(x |  Φ) is much more definite than the integral 

formulation of P(x) as aforementioned 

 
It is explained from the equation of sample likelihood P(x |  Φ) that given source and target 

with a function from source to target, target distribution is calculated by multiplying source 

distribution with determinant of gradient of inversed function. 

 
For optimization, P(z) is assumed to follow standard normal distribution with mean 0 and 

variance 1: 

 
Such that:  

 
Where notation ||.|| denotes norm of vector. Exactly, P(z) follows standard normal distribution 

with mean vector 0 and identity covariance matrix I. Sample log-likelihood is derived by 

taking natural logarithm of sample likelihood: 

 
NL aims to maximize sample log-likelihood so as to estimate generator parameter Φ: 

 
Stochastic gradient descent (SGD) method is used to estimate Φ by iterative process to 

update successively Φ at every iteration as follows: 

 
Where ∇logP(x | Φ) which is called sample log-likelihood gradient is gradient of sample log-

likelihood logP(x |  Φ) and γ (0 < γ ≤ 1) is learning rate. Note that SGD, which is an iterative 

process, pushes candidate solution at each iteration along the direction which is opposite to 

gradient of target function for minimization or has the same direction to gradient of target 

function for maximization with note that the step length is represented by learning rate. Given 

epoch of size N is denoted as D = (x(1), x(2),…, x(N)), the estimation equation of Φ is extended 

exactly as epoch estimation at every iteration of SGD: 

 
It is necessary to determine sample log-likelihood gradient ∇logP(x | Φ) with regard to 

parameter Φ. Due to (Nguyen, Matrix Analysis and Calculus, 2015, pp. 45-46): 
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And 

 
We have following equation to calculate log-likelihood gradient ∇logP(x | Φ): 

 
The notation (∇xg

–1(x | Φ))–1 denotes inverse of matrix ∇xg
–1(x | Φ). Because ∇xg

–1(x | Φ) 

called Jacobian matrix is a square matrix, the derivative d∇xg
–1(x | Φ) / dΦ is determined by 

taking first-order derivative for every element of ∇xg
–1(x | Φ) with regard to Φ, which 

produces a tensor. Therefore, d∇xg
–1(x | Φ) / dΦ is the second-order derivative of inversed 

generator g–1(x | Φ) with regard to x and Φ. Let 

 
It is possible to calculate this second-order derivative if inversed gradient ∇xg

–1(x | Φ) is 

determined. Log-likelihood gradient ∇logP(x | Φ) is rewritten: 

 (2.3) 

Where: 

 

 
According to traditional neural network, let φi be the ith row vector of matrix Φ, then 

generator g(x | φ) is linear composition as follows: 

 
Where δi is the ith bias parameter associated with each xi. Note, xi is the ith elemental variable 

in x whereas activation a(.) is invertible, whose inverse is a–1(.). In traditional neural network, 

xi represents a neuron or unit. Due to: 

 
When φi = (φi1, φi2,…, φin)

T and z = (z1, z2,…, zn)
T, without loss of generality, given φij and zj 

are the jth elements of φi and z, respectively we have fine-tuned inversed generator g–1(xi | φij): 

 
Where, 

 
It is easy to calculate the inversed gradient: 
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Where a–1(xi) is the first-order derivative of a–1(.) at xi. The second-order derivative 

 is determined as follows: 

 
Log-likelihood gradient with regard to φij is fine-tuned as ∇logP(xi | φij) is expended again: 

 
Because δi is the ith bias parameter, the second-order derivative  is 

determined as follows: 

 
Where, 

 

 
Log-likelihood gradient with regard to δi is fine-tuned as ∇logP(xi | δi) is expended again: 

 
In general, log-likelihood gradient ∇logP(xi | φij, δi) is specified as follows: 

 (2.4) 

 
Where a(.) and a–1(.) are invertible activation function and its inverse and, 

 

 

 

 
SGD estimation is fine-tuned as follows: 

 

 
Given epoch of size N is denoted as D = (x(1), x(2),…, x(N)), the estimation equation of φij and 

δi is extended exactly as epoch estimation at every uth iteration of SGD with regard to log-

likelihood gradient ∇logP(xi | φij, δi). 
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Where xi

(v) is the ith element of x(v) in epoch. As a result, NL trained with SGD is specified as 

follows: 

Initialize all φij, δi and set u = 0. 

Repeat 

Sampling epoch X = (x(1), x(2),…, x(N)) or receiving epoch X from big data / data stream. 

 

 
Increase u = u + 1. 

Until some terminating conditions are met. 

Note, a terminating condition is customized, for example, parameters φij and δi are not 

changed significantly or there is no more coming epoch X. Moreover, the index u indicates 

time point as well as iteration of SGD. After finite NL is trained, it can generate new data x’ 

by generator g(z | Φ) = x’ with any z randomized from standard normal distribution with 

mean 0 and variance 1. 

It is interesting that log-likelihood gradient ∇logP(xi | φij) is determined based on inversed 

gradient . Therefore, how to estimate generator parameter Φ by SGD 

estimation focuses on calculating inversed gradient  which is central point of 

normalizing flow (NL) technique. Moreover, how to calculate  is based on 

how to determine inversed generator g–1(x | Φ). In other words, the main problem of NL is 

how to determine inversed generator g–1(x | Φ) because it is easy to calculate gradient of 

function f(x) = g–1(x | Φ) with regard to x. Especially, when generator g(x | Φ) is implemented 

by DNN, NL will have some special techniques so that determining its inverse g–1(x | Φ) is 

easier. One of these technique is finite normalizing flow (finite NL) in which generator g(x | 

Φ) is implemented by a DNN having K layers from layer 1 to layer K where layer 0 is input 

layer with note that each layer is represented by partial generator function fk (Ruthotto & 

Haber, 2021, p. 8): 

 (2.5) 

Note, all layers fk have the same number of neurons which is the dimension n. Because fk is 

essentially vector-by-vector function whose input and output are vectors, it should have 

denoted as fk, especially, when fk here is bijection. However, it is still denoted fk for 

convenience. Let z(k+1) be output of partial generator fk, we have: 
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Inversed generator g–1(x | Φ) representing inversed DNN is determined: 

 (2.6) 

Each fk
–1 is called inversed partial generator function which is the inverse of partial generator 

function fk. Let x(k–1) be output of partial generator fk
–1, we have: 

 

 

 
“Input layer” of “inversed DNN” is fK+1

–1. The inversed generator DNN may be pseudo in 

case that only one generator DNN is designed so that inversed generator function fk
–1 is 

existent. An interesting result of the design of finite NL is that inversed gradient ∇g–1(x | Φ) is 

product of gradients of inversed partial generator fk
–1. 

 

 
Where Φ(k) is parameter of fk. It is now necessary to determine fine-tuned partial inversed 

gradient  in order to determine fine-tuned partial log-likelihood gradient 

∇logP(xi
(k) | φij

(k)) where xi
(k) is an elemental variable in x(k) = (x1

(k), x2
(k),…, xn

(k))T and φij
(k) is 

the jth element in φi
(k) = (φi1

(k), φi2
(k),…, φin

(k))T with note that φi
(k) is the ith row vector of 

matrix Φ(k). Moreover, let δi
(k) be the ith bias parameter associated with each xi

(k). Without loss 

of generality, given φj
(k), δi

(k), and zj
(k) along with invertible activation a(.), we have fine-tuned 

inversed generator g–1(xi
(k) | φij

(k), δi
(k)). 

 
Where, 

 
Where zi

(k) is the ith elemental variable in z(k) = (z1
(k), z2

(k),…, zn
(k))T. By similar way 

aforementioned, log-likelihood gradient ∇logP(xi
(k) | φij

(k), δi
(k)) is specified as follows: 

 (2.7) 

 
Where a(.) and a–1(.) are invertible activation function and its inverse and, 
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SGD estimation is fine-tuned as follows: 

 

 
Given epoch of size N is denoted as D = (x(1), x(2),…, x(N)), the estimation equation of φij

(k) 

and δi
(k) is extended exactly as epoch estimation at every uth iteration of SGD with regard to 

log-likelihood gradient ∇logP(xi
(k) | φij

(k), δi
(k)): 

 

 
Where (xi

(k))(v) is the ith element of x(v) in epoch with regard to inversed generator fk
–1. As a 

result, finite NL trained with SGD is specified as follows: 

Initialize all φij
(k), δi

(k) and set u = 0. 

Repeat 

Sampling epoch X = (x(1), x(2),…, x(N)) or receiving epoch X from big data / data stream. 
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Increase u = u + 1. 

Until some terminating conditions are met. 

Note, a terminating condition is customized, for example, parameters φij
(k) and δi

(k) are not 

changed significantly or there is no more coming epoch X. Moreover, the index u indicates 

time point as well as iteration of SGD. After finite NL is trained, it can generate new data x’ 

by generator g(z | Φ) = x’ with any z randomized from standard normal distribution with 

mean 0 and variance 1. 

Because it is not easy to calculate inversed gradient ∇xg
–1(x | Φ) as well as its determinant 

|∇xg
–1(x | Φ)| according to finite NL except the decomposition technique above of entire 

matrix parameter Φ into partial vector parameters φi
(k), there is technique called real RVP 

(Ruthotto & Haber, 2021, p. 9) which defines each layer or partial generator fk(z
(k)) by special 

way where z(k) is split into two parts such as z1
(k) and z2

(k) so that: 

 

(2.8) 

Of course, we have: 

 
Where sk and tk are two neural networks for scaling and translation, whose inputs and outputs 

have the same dimension. The operator  denotes component-wise multiplication of two 

vectors where every pair of two corresponding elements of the two vectors are multiplied 

together, for instance, given two arbitrary vectors u = (u1, u2,…, un)
T and v = (v1, v2,…, vn)

T, 

we have u v = (u1v1, u2v2,…, unvn)
T. Moreover, the exponential function exp(.) above whose 

input is vector produces a vector by taking exponential function over every element of input 

vector. Inversed generator fk
–1 is specified from generator fk. 

 

(2.9) 

Of course, we have: 

 
Inversed gradient  is the 2x2 Jacobian matrix determined as follows: 
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It is interesting that taking determinant of inversed gradient ∇xfk

–1(x(k)) becomes simple: 

 
(2.10) 

When this determinant is determined, it is possible to maximize log-likelihood logP(x | Φ) to 

estimate Φ where Φ here are weights of scaling neural network sk and translation neural 

network tk. Log-likelihood logP(x | Φ) is written: 

 
Because parameter Φ is now only weights of scaling neural network sk and translation neural 

network tk, maximizing log-likelihood logP(x | Φ) is now to optimize (train) sk and tk by some 

algorithms like backpropagation algorithm. 

 

 
Beside finite NL there is another NL technique called continuous NL but it is not mentioned 

here because continuous NL is relevant to hazard problem of differential equation which is 

not main subject of DNN. 

Recall that there are three main approaches for constructing DGM such as tractable 

density DGM, approximate density DGM, and implicit density DGM. However, if data is 

image, there is another categorization way that there are two main approaches: 1) pixel 

density approach tries to model pixel distribution and 2) block density approach tries to 

model entire image distribution as any data distribution. In other words, likelihood P(x | Φ, z) 

is defined based on probabilistic distribution of pixels where x is considered as set of pixels 

according to pixel density approach. On the other hand, block density approach considers 

likelihood P(x | Φ, z) is PDF of a block or entire image (unified big block) where x is 

considered as any arbitrary data. For instance, NL belongs to both tractable density DGM and 

block density approach. It is interesting that pixel density approach also belongs to tractable 

density approach because its PDF is defined obviously. Moreover, pixel density approach 

merges the two problems of training generator g(z | Φ) and qualifying such training task into 

the first problem which is to train g(z | Φ) by learning sample PDF P(x) because P(x) or P(x | 

Φ) now replaces P(x | Φ, z). 

Shortly, pixel density (PD) approach defines P(x) as product of all pixel distribution. 

Concretely, let x = (x1, x2,…, )T denote an image whose every ith pixel is represented by 

elemental variable xi and P(x) called image PDF is defined according to joint probability rule 

as follows: 

 

(2.11) 
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Where n implies image width with suppose that image width and image height are equal for 

convenience, and 

 
In other words, image PDF P(x) is product of all conditional PDFs P(xi | xi–1, xi–2,…, x1) 

where every P(xi | xi–1, xi–2,…, x1) is called conditional pixel PDF or pixel PDF in short. There 

is neither tractable data z nor explicit generator g(z | Φ) for generating new data in PD 

because generation task is based on the entire PDF P(x). For instance, without loss of 

generality, if we randomize k first pixels x1, x2,…, xk, we can generate n2–k remaining pixels 

by the recurrent process: determining P(xk+1 | xk, xk–1,…, x1) based on x1 to xk, generating xk+1 

according to P(xk+1 | xk, xk–1,…, x1) and determining P(xk+2 | xk+1, xk,…, x1) based on x1 to xk+1, 

generating xk+2 according to P(xk+2 | xk+1, xk,…, x1) and determining P(xk+3 | xk+2, xk+1,…, x1) 

based on x1 to xk+2,…, generating  according to P(  | , ,…, x1) and 

determining P(  | , ,…, x1) based on x1 to , generating the last  

according to P(  | , ,…, x1). By another viewpoint, the joint probability of n2–k 

remaining pixels denoted P(xk, xk+1,…, ) is determined and then, n2–k remaining pixels are 

generated according to this joint probability. Indeed, the joint probability P(xk, xk+1,…, ) of 

n2–k remaining pixels is totally determined when P(x) and k probabilities P(xi | xi–1, xi–2,…, x1) 

are determined where i is from 1 to k. 

 
Because there are a large number of pixels in a large image which produces a large number of 

pixel PDFs as well as every pixel PDF P(xi | xi–1, xi–2,…, x1) of a given pixel xi is itself also 

complicated with a lot of its previous pixels xi–1, xi–2,…, x1, there are many techniques 

proposed to PD in order to decrease complexity and increase computation effectiveness. 

Anyhow, the equation of image PDF P(x) above is important one in theory. One of PD 

techniques is to apply long short-term memory (LSTM) (Theis & Bethge, 2015) into 

modeling and learning sample PDF P(x). 

The default artificial neural network is feedforward neural network where data is fed to 

input layer which, in turn, is evaluated and passed across hidden layers to output layer in one-

way direction, finally. However, there is an extension of neural network, which is called 

recurrent neural work (RNN), where an output can be turned back in order to feed on network 

as input. In other words, RNN has circle, which allow that output can become input. For 

convenience and easy explanation, given T time points t = 1, 2,…, T, current state of a RNN 

at time point t is represented by three layers such as input layer xt, hidden layer ht, and output 

layer ot without loss of generality with note that ht can represent many hidden layers when 

RNN is a DNN too. Obviously, RNN is an extension of neural network because every triple 

(xt, ht, ot) is, essentially, a feedforward neural network, even a DNN. Hidden layer ht as well 

as output layer ot at current state t is calculated based on both current input layer xt and 

previous hidden layer ht–1 of previous state at time point t–1. Without loss of generality, input 

layer, hidden layer, and output layer are considered as input neuron, hidden neuron, and 

output neuron for convenience (Wikipedia, Recurrent neural network, 2005). 

 
(2.12) 

Where Wh is weight matrix of current hidden neuron ht regarding current input neuron xt, Uh 

is weight matrix of current hidden neuron ht regarding previous hidden neuron ht–1, and bh is 

bias vector of current hidden neuron ht whereas Wo is weight matrix of current output neuron 

ot regarding current hidden neuron ht and bo is bias vector of current output neuron ot. 

Moreover, σh(.) and σo(.) are activation functions of ht and ot, respectively with note that σh(.) 

and σo(.) are vector-by-vector functions. Backpropagation algorithm can be applied into 
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learning RNN as usual. It is interesting that structure of RNN defined by the triple (xt, ht, ot) 

is not changed but its parameters Wh, Uh, bh, Wo, and bo are changed by backpropagation 

algorithm when RNN is learned. Of course, values of the triple (xt, ht, ot) are changed over 

time points. Note, Wh, Uh, and Wo are matrix parameters and bh and bo are vector parameters 

whereas xt, ht, and ot are vector variables. 

Long short-term memory (LSTM) is an extension of RNN, which implies that RNN is 

used to implement short-term memory so that the short-term memory can last for a longer 

time through T time points t = 1, 2,…, T built in RNN. Consequently, the short-term memory 

is represented by a so-called cell associated with three gates such as input gate, forget gate, 

and output gate. Cell represents information piece stored in memory at current time 

(Wikipedia, 2007). Input gate controls which new information to be put to cell, forget gate 

decides which information to be discarded, and output gate controls which information to be 

sent to next state (Wikipedia, 2007). As a convention, the cell at current state t is represented 

by the pair (ct, ht) whereas forget gate, input gate, and output gate are represented by vector 

variables ft, it, and ot, respectively. Note, let gt and ct be cell input activation variable and cell 

state variable where cell input activation variable gt represents the activated input part of a 

cell, which is the important input part being different from the forgotten part, whereas cell 

state variable ct represents real information stored in cell which is, exactly, the short memory 

at current state. In literature, gt is also called cell gate. Some LSTM variants merge gt and ct 

into the same cell state variable. Although output gate ot represents which information to be 

sent to next state, it is consolidated with current cell memory ct in order to produce the real 

output information ht which represents bright and clear-cut memory. In other words, given 

cell (ct, ht), then ct represents the real information stored in memory and ht represents the 

clear-cut memory which displays brightly at the outside for next state. It is possible to 

consider that ct is evaluated value of cell t and ht is predictive value of cell t. Following 

equations specify LSTM based on specification of RNN (Wikipedia, 2007), which indicates 

how to calculate cell and gates. 

 

(2.13) 

Note, weight matrix Wi, weight matrix Ui, and bias vector bi are parameters of input gate it. 

Weight matrix Wf, weight matrix Uf, and bias vector bf are parameters of forget gate ft. 

Weight matrix Wo, weight matrix Uo, and bias vector bo are parameters of output gate ot. 

Weight matrix Wg, weight matrix Ug, and bias vector bg are parameters of cell gate gt. Vector 

variables it, ft, and ot are often in range [0, 1] whereas vector variables ct and ht are often in 

range [–1, 1]. Activation functions σi(.), σf(.), and σo(.) are often sigmoid (logistic) functions 

whereas activation functions σg(.) and σh(.) are hyperbolic tangent functions. The operator  

denotes component-wise multiplication of two vectors where every pair of two corresponding 

elements of the two vectors are multiplied together, for instance, given two arbitrary vectors 

u = (u1, u2,…, un)
T and v = (v1, v2,…, vn)

T, we have u v = (u1v1, u2v2,…, unvn)
T. Note, 

backpropagation algorithm can be applied into learning LSTM as usual. 

By applying LSTM into pixel density (PD) approach for modeling DGM, each pixel xi is 

represented by cell ci when pixel index i is considered as time point t. Because each cell ci is 

dependent on its one right previous cell ci–1 whereas conditional pixel PDF P(xi | xi–1, xi–2,…, 

x1) of pixel xi is dependent on i–1 previous pixels xi–1, xi–2,…, x1, Markov property is applied 

so that conditional pixel PDF of pixel xi depends on only one previous pixel xi–1. 
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It is now possible to apply LSTM to model PD by matching each pixel xi with each cell ci so 

that cell ci is considered as evaluated value of pixel xi as well as each hi is predictive value of 

pixel xi. Because image is two-dimension array, each pixel xij or each cell cij is indexed by 

two indices i and j following image height and image width. The event that cell cij or ci,j 

indexed by two indices i and j makes LSTM extended into two-dimension LSTM as follows: 

 

(2.14) 

The equations above specify core ideology of PD associated with two-dimension LSTM 

where the contextual meaning of weight and bias parameters W(.), U(.), V(.), and b(.) is not 

changed with note that W(.), U(.), and V(.) are weight matrices regarding current pixel, previous 

pixel (i, j–1), and previous pixel (i–1, j), respectively. In literature, such PD is called 

PixelRNN associated with diagonal two-dimension LSTM (Oord, Kalchbrenner, & 

Kavukcuoglu, 2016, pp. 3-4). According to diagonal two-dimension LSTM each pixel (i, j) at 

ith row and jth column has two previous neighbors such as previous left pixel (i, j–1) and 

previous upper pixel (i–1, j). For extension, each pixel (i, j) can have up four previous 

neighbors such as pixel (i, j–1), pixel (i–1, j–1), pixel (i–1, j), and pixel (i–1, j+1). Following 

figure depicts PixelRNN with diagonal two-dimension LSTM (Oord, Kalchbrenner, & 

Kavukcuoglu, 2016, p. 4). 

 
Figure 2.1. PixelRNN with diagonal two-dimension LSTM 

It is easy to add more weight parameters to these extensive cases. For example, cell gates and 

cell state with regard to the four previous neighbors are specified as follows: 
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Where matrices R(.) and S(.) are additional weight parameters regarding two new neighbor 

pixels such as pixel (i–1, j–1) and pixel (i–1, j+1).  

Recall that ci,j is considered as evaluated value of pixel xi,j and hi,j is predictive value of 

pixel xi,j. It is interesting that hi,j is generated pixel within the aforementioned generation 

process by PD. Turning back the generation process, without loss of generality, given k 

randomized pixels xi–1,1, xi–1,2,.., xi–1,j+1,…, xi,1, xi,2,…, xi,j, we will generate the next pixel 

xi,j+1. Firstly, PD model must be trained by some dataset as a set of images.  Secondly, k 

randomized pixels xi–1,1, xi–1,2,.., xi–1,j+1,…, xi,1, xi,2,…, xi,j are fed to PD again so as to update 

k sets of parameters W(.), U(.), and b(.) as well as compute k predictive values hi–1,1, hi–1,2,.., hi–

1,j+1,…, hi,1, hi,2,…, hi,j. Finally, it is possible to determine the predictive value hi,j+1 of the 

next pixel (i, j+1) given xi,j+1, hi,j, and hi–1,j+1 along with learned parameters of two-dimension 

LSTM PD. It is important to note that xi,j+1 is randomized arbitrarily whereas hi,j and hi–1,j+1 

were computed previously. Obviously, it is easy to generate next predictive values hi,j+2, 

hi,j+2,…, hi+1,j, hi+1,j+1, etc. by the similar process. Note, backpropagation algorithm can be 

applied into learning two-dimension LSTM as usual. Note, backpropagation algorithm is 

often associated with stochastic gradient descent (SGD) method and so, please pay attention 

to SGD. 

 

3. APPROXIMATE DENSITY DGM 
According to approximate density approach, DGMs try to estimate approximately generator 

PDF P(x | Φ, z) or derive other PDF that is similar to P(x | Φ, z) with note that PDF is 

abbreviation of probability density function. 

Recall that there are two problems related to construct a DGM: 1) how to define 

likelihood or error to train generator DNN g(z | Φ) and 2) how to define tractable PDF P(z) 

which implies the way to randomize z. The second problem relates to assert qualification of 

random data z’ and hence, the second problem is stated as qualification problem of how to 

qualify random data. According to implicit density approach, a discrimination DNN is used to 

qualify randomized data z instead of defining tractable PDF P(z) by Generative Adversarial 

Network (GAN) which is a typical method belonging to implicit density approach. In 

different way belonging to this approximate density approach, Variational Autoencoders 

(VAE) method developed by Kingma and Welling (Kingma & Welling, 2022) proposed 

another DNN called encoder f(x | Θ) to expectedly convert intractable data x into tractable 

data z. In other words, encoder f(x | Θ) approximates tractable data z by encoded data z’. 

 (3.1) 

It is easy to recognize that encoder f(x | Θ) is an approximation of the inverse of generator g(z 

| Φ) when g(z | Φ) is invertible where x-dimension m is larger than z-dimension n (m > n), 

which is the reason that generator g(z | Φ) is called decoder g(z | Φ) in VAE. Like decoder g(z 

| Φ), encoder f(x | Θ) is modeled by a so-called encoder DNN whose weights are parameter Θ 

called encoder parameter and so parameter Φ is called decoder parameter in VAE. By 

following the fact that encoder f(x | Θ) approximates tractable data z by encoded data z’, 

tractable PDF P(z) is approximated by a so-called encoder PDF Pf(z’). 

 
Because encoder f(x | Θ) depends on its parameter Θ, we can denote: 
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Essential, encoder PDF P(z’ | Θ, x) is likelihood function of z’ given x which is conditional 

PDF of z’ given x and hence, P(z’ | Θ, x) is called encoder likelihood which depends on 

encoder f(x | Θ), of course. On the other hand, P(z’ | Θ, x) is posterior PDF of tractable data 

given tractable data x where P(z) is prior PDF of tractable data. In practice, z’ is assumed to 

conform multivariate normal distribution and therefore, let μ(x) and Σ(x) be mean vector and 

covariance matrix of z’. Encoder likelihood P(z’ | Θ, x) becomes P(z’ | Θ, μ(x | Θ), Σ(x | Θ)) 

so that output of encoder DNN f(x | Θ) is mean μ(x | Θ) and covariance matrix Σ(x | Θ) while 

its input is x and its weights are Θ, of course. 

 

 

(3.2) 

Note, (.) denotes normal distribution and thus, (z | μ(x | Θ), Σ(x | Θ)) represents encoder 

likelihood. That (z | μ(x | Θ), Σ(x | Θ)) is encoder likelihood is an important improvement 

in developing VAE because encoder DNN f(x | Θ) is learned by minimizing a so-called 

encoder error which is represented by the difference between encoder likelihood and 

predefined tractable PDF P(z). Let KL( (z | μ(x | Θ), Σ(x | Θ)) | P(z)) be Kullback-Leibler 

divergence of encoder likelihood (z | μ(x | Θ), Σ(x | Θ)) and predefined tractable PDF P(z). 

As a result, KL( (z | μ(x | Θ), Σ(x | Θ)) | P(z)) becomes an ideal encoder error, which is 

called encoder KL divergence. The smaller the encoder KL divergence is, the closer the 

encoder likelihood (z | μ(x | Θ), Σ(x | Θ)) is to tractable PDF P(z), the better the encoder 

DNN f(x | Θ) is. 

 
(3.3) 

Therefore, encoder KL divergence KL( (z | μ(x | Θ), Σ(x | Θ)) | P(z)) is minimized by 

stochastic gradient descent (SGD) method in order to estimate decoder parameter Θ for 

training encoder DNN f(x | Θ) as follows: 

 
Which results estimation equation according to SGD: 

 
Where ∇KL( (z | μ(x | Θ), Σ(x | Θ)) | P(z)) is gradient of encoder KL divergence KL( (z | 

μ(x | Θ), Σ(x | Θ)) | P(z)) with regard to μ(x | Θ) and Σ(x | Θ) while γ is learning rate. Recall 

that SGD, which is an iterative process, pushes candidate solution at each iteration along the 

direction which is opposite to gradient of target function for minimization or has the same 

direction to gradient of target function for maximization with note that the step length is 

represented by learning rate. We have: 

 
There can be no change in estimating decoder parameter Φ within VAE so that decoder error 

ε(x | Φ, z) = ½||g(z | Φ) – x||2 is minimized to produce optimal Φ. 

 
Which results estimation equation according to SGD: 

 
Recall that generator g(z | Φ) is called decoder g(z | Φ) in VAE. As a result, encoder 

parameter Θ and decoder parameter Φ are estimated as follows: 
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Where dg(z | Φ) / dΦ is differential of g(z | Φ) with regard to Φ while 0 < γ ≤ 1 is learning 

rate and tractable PDF P(z) is predefined with note that VAE replaces tractable PDF P(z) by 

likelihood P(z’ | Θ, μ(x | Θ), Σ(x | Θ)) with fixed P(z). As usual, P(z) is assumed to conform 

standard normal distribution with mean 0 and covariance matrix I. 

 
This implies: 

 
Where I is identity matrix: 

 
It is easier to determine gradient of encoder KL divergence ∇KL(N(μ(x | Θ), Σ(x | Θ)) | (z | 

0, I)) with regard to Θ between the multivariate normal distribution (μ(x), Σ(x) | Θ) and the 

standard multivariate normal distribution (z | 0, I)). We have following equation to 

calculate such gradient (Kingma & Welling, 2022, p. 5), (Doersch, 2016, p. 9), (Nguyen, 

2015, p. 43): 

 
Where (Σ(x | Θ))–1 is inverse of covariance matrix Σ(x | Θ) and the subscript “T” denotes 

transposition operator of matrix and vector whereas dμ(x | Θ) / dΘ and dΣ(x | Θ) / dΘ are 

differentials of μ(x | Θ) and Σ(x | Θ) with regard to Θ, respectively. As a result, encoder 

parameter Θ and decoder parameter Φ are totally estimated according to SGD as follows: 

 

 
The estimation equations above are simple explanation of VAE but its formal construction is 

more complicated. We begin the aforementioned intractable PDF P(x) specified by law of 

total probability: 

 
However, P(x) is interpreted by another way which is based on Bayes’ rule within VAE: 
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Because the conditional probability P(z | x) is arbitrary without formal specification, it should 

be approximated by another PDF denoted Q(z | x) with assumption that the PDF Q(z | x) has 

formal specification like normal distribution. 

 
Logarithm of intractable PDF P(x) is specified as follows (Ruthotto & Haber, 2021, p. 13): 

 
This implies: 

 
(3.4) 

The second term log(Q(z | x) / P(z | x)) is not variant because Q(z | x) is approximated to P(z | 

x). Therefore, the first term log(P(x, z) / Q(z | x) is called variation lower bound or evidence 

lower bound because it is variant. Let l(x, z) be loss function or error function on VAE which 

is defined as the minus opposite of expectation of the evidence lower bound log(P(x, z) / Q(z 

| x) given PDF Q(z | x) with note that Q(z | x) has formal probabilistic distribution. 

 
Loss function l(x, z) is expended as follows: 

 
Because Q(z | x) and P(x | z) depend on encoder f(x | Θ) and decoder g(z | Φ), respectively, 

their parameters are Θ and Φ, respectively. 

 

 
Exactly, Q(z | Θ, x) is encoder likelihood which is the same to the aforementioned P(z’ | Θ, x) 

except that it is focused that Q(z | Θ, x) has formal probabilistic specification like normal 

distribution. Loss function l(Θ, Φ | x, z), which is now function of encoder parameter Θ and 

decoder parameter Φ, is written as follows (Ruthotto & Haber, 2021, p. 14): 

 
Firstly, please pay attention to the first term loss function l(Θ, Φ | x, z) where P(x | Φ, z) 

depends only on Φ although it can be considered as a conditional PDF of x given z because 

P(x | Φ, z) is defined for output layer containing only x of decoder DNN g(x | Φ) whose input 

is x. Therefore, we had the following assertion: 

 
Secondly, the second term in loss function l(Θ, Φ | x, z) is, actually, Kullback-Leibler 

divergence of encoder likelihood Q(z | Θ, x) and predefined tractable PDF P(z), which 

measure the difference between Q(z | Θ, x) and P(z). As a convention, this Kullback-Leibler 

divergence is called encoder KL divergence which is an ideal encoder error. 
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The smaller the encoder KL divergence is, the closer the encoder likelihood Q(z | Θ, x) is to 

tractable PDF P(z), the better the encoder DNN f(x | Θ) is. Loss function is rewritten again: 

 
Or, 

 (3.5) 

According to the two problem of construct a DGM, the first term –log(P(x | Φ, z)) in loss 

function indicates the first problem of how to train decoder DNN g(z | Φ) which is called 

reconstruction error in literature and the second term KL(Q(z | Θ, x) | P(z)) in loss function 

indicates the second problem of how to qualify training task for training encoder DNN f(x | Θ) 

which is called regularity in literature. Loss function l(Θ, Φ | x, z) is minimized to estimate Θ 

and Φ as follows: 

 

(3.6) 

Because P(x | Θ, z) depends only on Θ and encoder KL divergence KL(Q(z | Θ, x) | P(z)) 

depends only on Φ, the optimization problem is specified as follows: 

 

 
Which results estimation equations according to SGD: 

 
(3.7) 

Where ∇KL(Q(z | Θ, x) | P(z)) is gradient of encoder KL divergence KL(Q(z | Θ, x) | P(z)) 

with regard to encoder parameter Θ. Note that tractable PDF P(z) is predefined (fixed). While 

Q(z | Θ, x) is called encoder likelihood, P(x | Φ, z) is called decoder likelihood. On the other 

hand, while P(z) is prior PDF of intractable data z, then Q(z | Θ, x) is approximated posterior 

PDF of z given x where both P(z) and Q(z | Θ, x) have formal probabilistic specifications and 

moreover, P(z) is fixed (predefined). 

 
Both P(z | Θ, x) and Q(z | Θ, x) are encoder likelihood as well as posterior PDF of tractable 

data z but Q(z | Θ, x) is approximated one whose probabilistic distribution is specified 

formally. Therefore (Ruthotto & Haber, 2021, p. 16), randomized data z’ in latent space Z is 

sampled from approximated distribution Q(z | Θ, x) instead of sampling from true distribution 

P(z | Θ, x). 

Given epoch of size N is denoted as D = (d(1) = (x(1), z(1)), d(2) = (x(2), z(2)),…, d(N) = (x(N), 

z(N))), the estimation equations of Θ and Φ are extended exactly as epoch estimation at every 

iteration of SGD: 

 

 
Please distinguish that the tractable data z(i) in the first equation above follows distribution 

P(z) but the tractable data z(i) in the second equation above follows distribution Q(z | Θ, x). 

As a result, VAE trained with SGD is specified as follows: 

Initialize Θ and Φ and set k = 0. 

Repeat 

Sampling epoch X = (x(1), x(2),…, x(N)) or receiving epoch X from big data / data stream. 
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Randomize random epoch Z = (z(1), z(2),…, z(N)) in which each z(i) is randomized from 

distribution Q(z | Θ(k), x(i)). 

 

 
Increase k = k + 1. 

Until some terminating conditions are met. 

Note, a terminating condition is customized, for example, parameters Θ and Φ are not 

changed significantly or there is no more coming epoch X. Moreover, the index k indicates 

time point as well as iteration of SGD. Because PDF P(z) is predefined, it is easy to calculate 

encoder KL divergence KL(Q(z(i) | Θ(k), x(i)) | P(z)) but it is necessary to define P(x) by well-

known distribution. However, randomizing random epoch Z = (z(1), z(2),…, z(N)) from 

distribution Q(z | Θ(k), x(i))) is not easy and so, VAE trained with SGD will be fine-tuned. It is 

interesting that when Q(z | Θ(k), x(i))) is posterior PDF of z and P(z) is prior PDF of z, the 

event that z is randomized from the posterior PDF Q(z | Θ(k), x(i))) and Q(z | Θ(k), x(i))) itself is 

updated continuously based on its previous evidence x(i) over SGD iterations implies that 

VAE conforms Bayesian statistics in estimation. Moreover, P(z) is an alignment that Q(z | 

Θ(k), x(i))) adjusts itself with support of encoder KL divergence KL(Q(z(i) | Θ(k), x(i)) | P(z)). 

Because encoder likelihood Q(z | Θ, x) must always have formal probabilistic distribution, 

it is assumed to follow multivariate normal distribution in practice. Therefore, let μ(x | Θ) and 

Σ(x | Θ) be mean vector and covariance matrix of z, then encoder likelihood Q(z | Θ, x) 

becomes Q(z | μ(x | Θ), Σ(x | Θ)) so that output of encoder DNN f(x | Θ) is mean μ(x | Θ) and 

covariance matrix Σ(x | Θ) while its input is x and its weights are Θ, of course. Please pay 

attention to the fact that output of encoder DNN f(x | Θ) is now μ(x | Θ) and Σ(x | Θ) which 

are corresponding to z. Moreover, μ(x | Θ) and Σ(x | Θ) are functions of x, whose parameter is 

Θ. 

 

(3.8) 

Note, (z | μ(x | Θ), Σ(x | Θ)) denotes multivariate normal distribution with mean μ(x | Θ) 

and covariance matrix Σ(x | Θ). 

 
Note, dimension of tractable data z is n. Moreover, notation |.| or notation det(.) denotes 

determinant of matrix whereas (Σ(x | Θ))–1 is inverse of covariance matrix Σ(x | Θ) and the 

subscript “T” denotes transposition operator of matrix and vector. It is easy to recognize that 

z’ is approximation of z. When tractable PDF P(z) is fixed, it is often assumed to follow 

multivariate normal distribution with predefined mean μ0 and predefined covariance matrix 

Σ0 as follows: 

 
Encoder KL divergence KL(Q(z | Θ, x) | P(z)) between Q(z | Θ, x) and P(z) becomes encoder 

KL divergence KL(Q(z | μ(x | Θ), Σ(x | Θ)) | P(z)) between Q(z | μ(x | Θ), Σ(x | Θ)) and P(z) 

as follows: 
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Which is, essentially, encoder KL divergence between two normal distributions, KL( (z | 

μ(x | Θ), Σ(x | Θ)) | (μ0, Σ0)). As a convention, this divergence is called encoder KL 

divergence which is determined in literature as follows (Doersch, 2016, p. 9): 

 

 
Where tr(.) denotes trace operator of square matrix which is sum of elements on main 

diagonal, for instance, given nxn matrix A, then tr(A) = a11 + a22 +… + ann with note that aij is 

the element at row i and column j. Moreover, notation |.| or notation det(.) denotes 

determinant of matrix. Gradient of encoder KL divergence consists of two elemental 

gradients with regard to mean μ(x | Θ) and covariance matrix Σ(x | Θ). 

 
Where, 

 

 
Where dμ(x | Θ) / dΘ and dΣ(x | Θ) / dΘ are differentials of μ(x | Θ) and Σ(x | Θ) with regard 

to Θ, respectively. It is not difficult to calculate KL gradient ∇μ: 

 
(3.9) 

Due to (Nguyen, Matrix Analysis and Calculus, 2015, p. 35): 

 
It is not difficult to calculate KL gradient ∇Σ too: 

 
(3.10) 

Due to (Nguyen, Matrix Analysis and Calculus, 2015, pp. 45-46): 

 

 
As a result, encoder parameter Θ consists of two elemental parameters according to with 

regard to mean μ(x | Θ) and covariance matrix Σ(x | Θ) as follows: 

 
Where, 
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Note, given random vector z = (z1, z2,…, zn)

T whose elements zi are random variables too, σij 

where i≠j is covariance between two random variables zi and zj and σi
2 is variance of random 

variable zi. It is easy to calculate encoder parameters Θμ and ΘΣ by SGD estimation: 

 

 
Where dμ(x | Θμ) / dΘμ and dΣ(x | ΘΣ) / dΘΣ are differentials of μ(x | Θμ) and Σ(x | ΘΣ) with 

regard to Θμ and ΘΣ, respectively. In practice, P(z) is assumed to conform standard normal 

distribution with zero mean μ0 = 0 and identity covariance matrix Σ0 = I where I is identity 

matrix so that encoder parameters Θμ and ΘΣ are computed effectively. 

 

(3.11) 

In order to improve more computational effectiveness, it is possible to suppose that elemental 

variables zi in z = (z1, z2,…, zn)
T within context P(z) are mutually independent so that 

covariance σij between two variables zi and zj where i≠j is 0, which results that there only 

exist variances σi
2 of zi. Covariance matrix Σ(x | Θ) becomes diagonal matrix: 

 
Note, 

 
Where σi

2(x | Θ) is variance of elemental variable xi in z = (z1, z2,…, zn)
T given x according to 

encoder f(x | Θ). As a result, encoder parameter ΘΣ, which is now diagonal matrix represented 

by its diagonal vector , is computed easier. 

 
Where, 
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In general, estimation equations for encoder parameter Θ = (Θμ, )T are specified as follows: 

 

(3.12) 

Where dσ2(x | ) / d  is differential of σ2(x | ) with regard to . 

There can be no change in estimating decoder parameter Φ within VAE so that decoder 

log-likelihood log(P(x | Φ, z)) is maximized. 

 
As usual, decoder likelihood P(x | Φ, z) is assumed to distribute normally with mean δ and 

variance σ2. 

 
Which implies decoder log-likelihood log(P(x | Φ, z)) as follows: 

 
Where ||.|| denotes Euclidean norm of vector. Gradient of decoder log-likelihood is: 

 
Where dg(z | Φ) / dΦ is differential of g(z | Φ) with regard to Φ. Let δ = 0 and σ2=1 

optimization, we have: 

 
Which implies estimation equation for decoder parameter Φ by SGD as follows: 

 
Because data z in the decoder estimation equation above follows encoder likelihood Q(z | Θ, 

μ(x | Θμ), Σ(x | ΘΣ)) = (z | μ(x | Θμ), Σ(x | ΘΣ)) rather than tractable PDF P(z) = (z | μ0, Σ0), 

it is denoted as z’ such that: 
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Given epoch of size N is denoted as D = (d(1) = (x(1), z’(1)), d(2) = (x(2), z’(2)),…, d(N) = (x(N), 

z’(N))), the estimation equations of Θ and Φ are extended exactly as epoch estimation at every 

iteration of SGD: 

 

(3.13) 

 

 
As a result, VAE trained with SGD is specified as follows: 

Initialize Θ = (Θμ, )T and Φ and set k = 0. 

Repeat 

Sampling epoch X = (x(1), x(2),…, x(N)) or receiving epoch X from big data / data stream. 

 

 
Randomize random epoch Z = (z(1), z(2),…, z(N)) from standard normal distribution P(z) = 

(0, I) with mean 0 and identity covariance matrix I. For each randomized data z(i), let 

z’(i) be calculated based on z(i) so that z’(i) follows multivariate normal distribution Q(z’ | 

μ(x | Θμ), Σ(x | ΘΣ)) = (z’ | μ(x | Θμ), Σ(x | ΘΣ)) with mean μ(x | Θμ) and covariance 

matrix Σ(x | ΘΣ) with note that ΘΣ = ( )nxn is diagonal matrix. 

 

 
Increase k = k + 1. 

Until some terminating conditions are met. 

Note, a terminating condition is customized, for example, parameters Θ and Φ are not 

changed significantly or there is no more coming epoch X. Moreover, the index k indicates 

time point as well as iteration of SGD. Because it is not easy to randomize z according to 

normal distribution Q(z | μ(x | Θμ), Σ(x | ΘΣ)) = (z | μ(x | Θμ), Σ(x | ΘΣ)) with mean μ(x | Θμ) 

and covariance matrix Σ(x | ΘΣ), there is a trick that simple data z is randomized firstly by 

simple normal distribution P(z) = (0, I) with mean 0 and identity covariance matrix I and, 

then random data z’ is calculated based on z and μ(x | Θμ), Σ(x | ΘΣ) as follows: 

 
(3.14) 

Such that z’ follows normal distribution (z’ | μ(x | Θμ), Σ(x | ΘΣ)) with mean μ(x | Θμ) and 

covariance matrix Σ(x | ΘΣ) according to some rule of normal distribution in applied statistics 

(Hardle & Simar, 2013, p. 157). The notation A = Σ(x | ΘΣ)1/2 implies AA = Σ(x | ΘΣ) and so, 

we can consider it as square root of Σ(x | ΘΣ). Calculating this square root is not so easy 

because of complexity of singular decomposition for calculating it. Fortunately, it is easier to 

calculate the square root when ΘΣ was simplified by diagonal elements (σ2(x | ΘΣ))nxn. Indeed, 

we have: 
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Where, 

 
Following figure depicts VAE. 

 
Figure 3.1. Variational Autoencoders (VAE) 

There is a question that how to calculate the differentials dμ(x | Θμ) / dΘμ, dσ
2(x | ) / d , 

and dg(z’ | Φ) / dΦ. Indeed, it is not difficult to calculate them in context of neural network 

associated with backpropagation algorithm so that the last output layer as well as last neuron 

o of any DNN f(x | Θ) or g(z | Φ) is acted by activation function a(.) as follows: 

 

 
Where i is input of the last layer o and weight parameter w is a part of entire parameter Θ or 

Φ and hence, we need to focus on calculating differential da(o) / dw which is equivalent to 

any differential dμ(x | Θμ) / dΘμ, dσ2(x | ) / d , or dg(z’ | Φ) / dΦ so that 

backpropagation algorithm will solve remaining parts of entire parameter Θ or Φ. 

 
Indeed, we have: 

 
Note, the subscript “T” denotes transposition operator of vector and matrix in which row 

vector becomes column vector and vice versa. It is easy to calculate the derivative a’(o) when 

activation function was specified, for instance, if a(o) is sigmoid function, we have: 

 

 



60 

 

In practice, y is replaced by a(y) in order to prevent o from being out of space: 

 
As a result, we have: 

 
For fast computation, it is possible to set the derivative a’(o) to be small enough constants 

like 1 such that any differential is iT. 

Given epoch D = (d(1) = (x(1), z(1)), d(2) = (x(2), z(2)),…, d(N) = (x(N), z(N))) implies that the 

epoch is created or sent by equilateral distribution 1/N but in general case, D can follow an 

arbitrary distribution denoted by PDF P(d), which makes the optimization problem and the 

SGD estimation changed a little bit by theoretical expectation given distribution P(d). 

 

 
Where, 

 

 
However, there is no significant change in aforementioned practical technique to estimate 

parameters. 

Recall that the default artificial neural network is feedforward neural network where data 

is fed to input layer which, in turn, is evaluated and passed across hidden layers to output 

layer in one-way direction, finally. However, there is an extension of neural network, which is 

called recurrent neural work (RNN), where an output can be turned back in order to feed on 

network as input. In other words, RNN has circle, which allow that output can become input. 

There are many kinds of RNN, for instance, long short-term memory is a case of RNN 

aforementioned. Boltzmann machine (Wikipedia, Boltzmann machine, 2004) is another 

variant of RNN, in which there is no separation of inputs from outputs. Like Hopfield 

network (Wikipedia, Hopfield network, 2004), every neuron (unit) in Boltzmann machine 

connects to all remaining neurons. In other words, Boltzmann machine applies an interesting 

aspect that all input neurons are output neurons too. 

 
Figure 3.2. Topology of Hopfield network and Boltzmann machine 

Boltzmann machine named by the name of Austrian physicist Ludwig Eduard Boltzmann, 

also called Sherrington-Kirkpatrick model with external field or stochastic Ising-Lenz-Little 
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model, is a stochastic spin-glass model with an external field and classified as a Markov 

random filed too. For easy explanation, Boltzmann machine simulates spinning glass process 

or annealing metal process, in which melt glass or melt metal will be frozen or get stable at 

some energy and some temperature where such energy and temperature are called stable 

energy and stable temperature at stable state of glass. The annealing process aims to reach the 

stable state of metal (glass) at which time the metal is frozen. Given concrete temperature, the 

smaller the energy is, the more stable the metal state is. Similarly, given concrete energy, the 

smaller the temperature is, the more stable the metal state is. Therefore, annealing process is 

cooling process where probability of metal state, which is proportional to energy and 

temperature, follows the so-called Boltzmann distribution specified as follows: 

 

(3.15) 

Where P(s) is probability of current state s and E(s) is energy applied to metal at state s given 

temperature T while κ is Boltzmann constant and M is the number of states. Note, T can be 

considered as a parameter. If the denominator is constant, Boltzmann probability is 

approximated as follows: 

 
In annealing process, if next energy is concerned by observing current energy because of 

successive annealing process, energy deviation or energy difference ΔE(s, snew) between 

current energy E(s) and next energy E(snew) is concerned so that Boltzmann probability 

derives a so-called  acceptance probability P(s, snew, T) as follows: 

 
Where, 

 
Given a certain temperature T, the larger the acceptance probability is, the higher likely the 

annealing process stops, the higher the likelihood of stability is. In other words, acceptance 

probability P(s, snew, T) decides whether or not the new state snew is moved next in annealing 

process. When applied into solving optimization problem as well as learning problem, 

simulated annealing (SA) algorithm codes candidate solution as states. Indeed, SA is iterative 

process including many enough iterations where SA decreases temperature T at each iteration 

and then, randomize a new state snew and calculates energy E(snew) of the new state. Whether 

or not the new state (new candidate solution) snew is based on the acceptance probability P(s, 

snew, T) based on current state s, new state snew, current temperature T. If the new candidate 

solution snew is selected as current solution, SA will decrease temperature in the next iteration. 

Following is pseudo code of SA: 

Initialize current temperature T by highest temperature T0 as T = T0. 

Repeat 

Decrease current temperature, for example, T = decrease(T). 

Select a random neighbor of current state as snew = neighbor(s). 

If P(s, snew, T) is larger than a predefined threshold then 

s = snew 

End if 

Until terminating conditions are met. 
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The terminating conditions can be that best state (solution) is reached, the current state s is 

good enough, the current temperature T is low enough, or the number of iterations is large 

enough. As usual, given a maximum iteration number K and the current iteration number k, 

the temperature decreasing function can be defined as follows: 

 
It is easy to infer that it is possible to set the initial temperature to be the maximum number of 

iterations as T0 = K in practice. There is no significant change when applying SA into training 

Boltzmann machine where the most important problem is how to specify energy of 

Boltzmann machine. Fortunately, global energy of Boltzmann machine inherits from global 

energy of Hopfield network because Boltzmann machine is a type of Hopfield network which 

in turn is a variant of RNN. Suppose an entire Boltzmann machine is represented by a vector 

x = (x1, x2,…, xn) in which each xi is a neuron or unit. It is exact that a certain state of 

Boltzmann machine is represented by x which is evaluated at certain time point. It is possible 

to denote current state of Boltzmann machine as x instead. For convenience, the next state of 

Boltzmann machine is denoted x’. Energy E(x) of Boltzmann machine at state x is defined 

based on global energy of Hopfield network as follows (Hinton, 2007, p. 2): 

 
Note, wij is weight between neuron xi and neuron xj whereas bi is bias of neuron xi. As usual, 

biases bi are considered as parameters like weights wij. Because there are n(n–1)/2 

connections as well as n(n–1)/2 weights, the equation of energy is rewritten for convenience 

as follows (Wikipedia, Boltzmann machine, 2004): 

 
(3.16) 

All weights wij compose weight matrix W = (wij)nxn whose elements on diagonal are zero. 

Note, W is nxn symmetric matrix. 

 

 
Every neuron xi is evaluated by propagation rule: 

 
Neurons in traditional Boltzmann machine are binary variables such that xi belongs to {0, 1} 

but it is extended to allow neurons xi to belong to arbitrary real interval and so, suppose every 

xi ranges in interval [0, 1] without loss of generality. Rectified Linear Unit (ReLU) function is 

used to ramp xi in interval [0, 1] so as to modify the propagation rule a little bit but learning 

algorithm mentioned later is not changed because the first-order derivative of ReLU function 

within valid domain [0, 1] is 1. 

 
Where 

 
It implies: 
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So that the propagation rule is not changed in theory: 

 
Based on definition of global energy, Boltzmann probability density function (PDF) of 

Boltzmann machine is determined as follows: 

 
Recall that: 

 

 
Within context of DGM, such PDF is generator likelihood whose parameter is Φ = (W, b). 

 
Because the denominator is constant with regard to W and b, Boltzmann PDF is 

approximated as follows: 

 
(3.17) 

For learning Boltzmann, maximum likelihood estimation (MLE) method (Goodfellow, 

Bengio, & Courville, Deep Learning, 2016, p. 655) is applied into estimating weight 

parameter W and bias parameter b by maximizing Boltzmann PDF with regard to wij and bi. 

 

 
By taking natural logarithm of Boltzmann PDF, the optimization becomes easier to be solved. 

 

 
Where logP(x | W, b) is called Boltzmann log-likelihood or Boltzmann log-PDF. 

 
The first-order partial derivatives of Boltzmann log-likelihood are: 

 

 
As a convention, these first-order partial derivatives are called (partial) gradients. By 

applying stochastic gradient descent (SGD) method into estimating wij and bi given 

Boltzmann log-likelihood, we have: 

 

(3.18) 
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Where 0 < γ ≤ 1 is learning rate. It is easy to recognize that the estimation equations above 

confirm Hebbian learning rule in which the strength of connection represented by weight is 

consolidated by agreement of two nodes to which the connection is attached. As a result, 

Boltzmann machine trained with SGD is specified as follows: 

Initialize W and set k = 0. 

Repeat 

Data (state) x is received from some real sample, or it can be kept intact. 

 
Increase k = k + 1. 

Until some terminating conditions are met. 

Note, a terminating condition is customized, for example, parameters W and b are not 

changed significantly, the maximum number of iterations is reached, or Boltzmann machine 

gets stable. The terminating condition that Boltzmann machine gets stable receives more 

concerns because stability is important property of spinning glass process or annealing 

process that Boltzmann machine. However, checking the stability in which global energy E(x) 

is not changed may consume a lot of iterations. Fortunately, SA can be incorporated into SGD 

so as to derive a more effective estimation. Boltzmann machine trained with SGD and SA is 

specified as follows: 

Initialize current temperature T by highest temperature T0 as T = T0. 

Repeat 

Data (state) x is received from some real sample, or it can be kept intact. 

 
 

Evaluate Boltzmann machine given current parameter W(k+1) and b(k+1) so as to produce a 

new state x’: 

 
If P(x, x’, T | W(k+1), b(k+1) is larger than a predefined threshold then 

x = x’ 

Decrease current temperature, for example, T = decrease(T). 

End if 

Increase k = k + 1. 

Until terminating conditions are met. 

The terminating conditions can be that best state (x’) is reached, the current state x is 

good enough, or the current temperature T is low enough. These terminating conditions 

reflect the stable state of Boltzmann machine. As usual, given a maximum iteration number K 

and the current iteration number k, the temperature decreasing function can be defined as 

follows: 

 
Of course, the acceptance probability is: 
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(3.19) 

Where, 

 
There is a so-called restricted Boltzmann machine (RBM) in which neurons are separated 

into two groups such as input group denoted xz and hidden group denoted xx. 

 
The training algorithm by incorporation of SA and SGD is not changed except that there is 

neither connection between input neurons and input neurons nor connection between hidden 

neurons and hidden neurons. In other words, all connections are made between input group 

and hidden group, for instance, suppose cardinality of input group is k then, the number of 

connections is k(n – k). Therefore, the two groups are considered layers such as input layer 

and hidden layer. Of course, both layers are output layers because connections in Boltzmann 

machine are two-direction connections whereas feed-forward neural network accepts only 

one-direction connections. RBM is trained faster than traditional Boltzmann machine because 

its number of connections is smaller. Moreover, it is clear to apply RBM into DGM because 

generator function in DGM x = g(z | Φ) is modeled by RBM whose input is input group xz 

and whose output is output group xx such as xx = g(xz | W, b) where xx is calculated by 

evaluating RBM given input xz. 

 
The reason that the RBM approach for DGM is classified into approximate density DGM is 

that generator likelihood P(x | W, b) is defined indirectly based on the energy E(x | W, b). Of 

course, xz is randomized such that xx is generated data. 

 

4. IMPLICIT DENSITY DGM 

According to implicit density approach, DGMs do not specify explicitly generator PDF P(x | 

Φ, z), which does not means that such PDF is not existent but it is simple that such PDF is 

not concerned. Note, PDF is abbreviation of probability density function. 

Recall that there are two problems related to construct a DGM: 1) how to define 

likelihood or error to train generator DNN g(z | Φ) and 2) how to define tractable PDF P(z) 

which implies the way to randomize z. The second problem relates to assert qualification of 

random data z’ and hence, the second problem is stated as qualification problem of how to 

qualify random data. However, it is essential that the qualification problem aims to improve 

generator DNN g(z | Φ) because g(z | Φ) translate intractable z into tractable x. Generative 

Adversarial Network (GAN) developed by Goodfellow et al. (Goodfellow, et al., 2014) 

aims to reinforcing quality of generator DNN g(z | Φ) = x’ ≈ x by adding a so-called 

discriminator which is a discrimination function d(x | Ψ): x → [0, 1] from concerned data x or 

x’ to range [0, 1] in which d(x | Ψ) can distinguish fake data from real data. In other words, 

the larger result the discriminator d(x’ | Ψ) derives, the more realistic the generated data x’ is. 

Obviously, discriminator d(x | Ψ) is implemented by a DNN whose weights are Ψ called 

discriminator parameter with note that this discriminator DNN has only one output neuron 

denoted d0. 

 (4.1) 

Actually, the task of discriminator d(x | Ψ) is classification task with regard to class d0 

belonging to interval [0, 1]. GAN does not establish explicitly PDFs of generator g(z | Φ) and 

discriminator d(x | Ψ) such as P(x | Φ, z) and P(d0 | Ψ, x) and hence, GAN does not define 

explicitly and separately likelihoods / errors of g(z | Φ) and d(x | Ψ) too. Indeed, GAN instead 

unifies optimization constraints of g(z | Φ) and d(x | Ψ) into a target function l(Φ, Ψ | x, z). 
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 (4.2) 

Indeed, target function l(Φ, Ψ | x, z) is error function and so it is called loss function in 

literature. As a result, GAN tries to optimize dually generator parameter Φ and discriminator 

parameter Ψ so that optimal estimate Φ* and optimal estimate Ψ* are minimizer and 

maximizer of loss function l(Φ, Ψ | x, z) with expectation that Nash equilibrium will be 

achieved at the saddle point (Φ*, Ψ*) with note that loss function l(Φ, Ψ | x, z) is function of 

Φ and Ψ given data x and z. 

 (4.3) 

 
This is min-max problem in game theory (Goodfellow, et al., 2014): 

 
Which results estimation equation according to stochastic gradient descent (SGD) method: 

 

 
Where γ is learning rate. Recall that SGD, which is an iterative process, pushes candidate 

solution at each iteration along the direction which is opposite to gradient of target function 

for minimization or has the same direction to gradient of target function for maximization 

with note that the step length is represented by learning rate. Note, ∇Φl(Φ, Ψ* | x, z) is 

gradient of loss function l(Φ, Ψ* | x, z) fixed Ψ* with regard to generator parameter Φ and 

∇Ψl(Φ*, Ψ | x, z) is gradient of loss function l(Φ*, Ψ | x, z) fixed Φ* with regard to 

discriminator parameter Ψ as follows: 

 

 
Therefore, the estimation equation is rewritten as follows: 

 (4.4) 
 

According to equations above, real data x aims to maximize discriminator d(x | Ψ) and in 

opposite, generated data x’ = g(z | Φ) aims to minimize discriminator d(x’ | Ψ). Although both 

GAN and VAE use two DNNs for data generation but the underlying theory of GAN is 

slightly more succinct than VAE because there is no requirement of specifying probabilistic 

distribution P(z) of tractable z. As a convention, the gradient ∇Φ(log(1 – d(g(z | Φ) | Ψ*))) 

related to generator parameter Θ is called generator gradient and the gradient ∇Ψ(log(d(x | Ψ)) 

+ log(1 – d(g(z | Φ*) | Ψ))) related to discriminator parameter Θ is called discriminator 

gradient. 

Given epoch of size N is denoted as D = ((x(1), z(1)), (x(2), z(2)),…, (x(N), z(N))), the 

estimation equations of Φ and Ψ are extended exactly as epoch estimation at every iteration 

of SGD: 

 

 
As a result, GAN trained with SGD is specified as follows: 

Initialize Φ and Ψ and set k = 0. 

Repeat 
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Sampling epoch X = (x(1), x(2),…, x(N)) or receiving epoch X from big data / data stream. 

Randomize random epoch Z = (z(1), z(2),…, z(N)) from standard normal distribution P(z) = 

(z | 0, I) with mean 0 and identity covariance matrix I. 

 

 
Increase k = k + 1. 

Until some terminating conditions are met. 

Note, a terminating condition is customized, for example, parameters Φ and Ψ are not 

changed significantly or there is no more coming epoch X. Moreover, the index k indicates 

time point as well as iteration of SGD. 

Recall that the estimation equations of generator parameter Φ and discriminator 

parameter Ψ are: 

 

 
It is necessary to calculate generator gradient and discriminator gradient. Indeed, we have: 

 

 
Where ∂d(.) / ∂Φ and ∂d(.) / ∂Ψ denotes differentials of discriminator function with regard to 

Φ and Ψ, respectively. 

Given epoch of size N is denoted as D = ((x(1), z(1)), (x(2), z(2)),…, (x(N), z(N))), the 

estimation equations of Φ and Ψ are extended exactly as epoch estimation at every iteration 

of SGD: 

 (4.5) 

 
As a result, GAN trained with SGD is specified as follows: 

Initialize Φ and Ψ and set k = 0. 

Repeat 

Sampling epoch X = (x(1), x(2),…, x(N)) or receiving epoch X from big data / data stream. 

Randomize random epoch Z = (z(1), z(2),…, z(N)) from standard normal distribution P(z) = 

(z | 0, I) with mean 0 and identity covariance matrix I. 
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Increase k = k + 1. 

Until some terminating conditions are met. 

Note, a terminating condition is customized, for example, parameters Φ and Ψ are not 

changed significantly or there is no more coming epoch X. Moreover, the index k indicates 

time point as well as iteration of SGD. 

Following figure depicts GAN. 

 
Figure 4.1. Generative Adversarial Network (GAN) 

There is a question that how to calculate the differentials ∂d(.) / ∂Φ and ∂d(.) / ∂Ψ. Indeed, it 

is not difficult to calculate them in context of neural network associated with 

backpropagation algorithm so that the last output layer as well as last neuron o of any DNN 

f(x | Θ) or g(z | Φ) is acted by activation function a(.) as follows: 

 

 
Where i is input of the last layer o and weight parameter w is a part of entire parameter Φ or 

Ψ and hence, we need to focus on calculating differential da(o) / dw which is equivalent to 

any differential ∂d(.) / ∂Φ or ∂d(.) / ∂Ψ so that backpropagation algorithm will solve 

remaining parts of entire parameter Φ or Ψ. 

 
Indeed, we have: 

 
Note, the subscript “T” denotes transposition operator of vector and matrix in which row 

vector becomes column vector and vice versa. It is easy to calculate the derivative a’(o) when 

activation function was specified, for instance, if a(o) is sigmoid function, we have: 

 

 
In practice, y is replaced by a(y) in order to prevent o from being out of space: 

 
As a result, we have: 

 
For fast computation, it is possible to set the derivative a’(o) to be small enough constants 

like 1 such that any differential is iT. 

Given epoch D = (d(1) = (x(1), z(1)), d(2) = (x(2), z(2)),…, d(N) = (x(N), z(N))) implies that the 

epoch is created or sent by equilateral distribution 1/N but in general case, D can follow an 

arbitrary distribution denoted by PDF P(d), which makes loss function l(Φ, Ψ) changed a 

little bit by theoretical expectation given distribution P(d). 
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Suppose x and z distribute separately as P(x) and Q(z) such that P(x) is called original data 

PDF and Q(z) is called generated data PDF, we have: 

 
(4.6) 

Although there is no significant change in aforementioned practical technique to estimate 

parameters, it is necessary to research original data PDF P(x) and generated data PDF Q(z) as 

well as expectation form of loss function l(Φ, Ψ) so as to prove convergence of GAN. Recall 

that the min-max problem is: 

 
That is: 

 

 
The convergence of GAN is equivalent to the convergence of this min-max problem. In other 

words, Goodfellow et al. (Goodfellow, et al., 2014) proved the existence of global optimal 

value l* such that min-max problem approach l* as follows: 

 (4.7) 

Because z is generated by distribution Q(z) and g(z | Φ) is valuated as x as g(z | Φ) = x, loss 

function l(Φ, Ψ) is rewritten by changing variable (Goodfellow, et al., 2014, p. 5). 

 
In mathematical literature, function alog(y) + blog(1–y) gets maximal at maximizer y = 

a/(a+b) such that: 

 
Therefore, we have (Goodfellow, et al., 2014, p. 5): 

 
Where KL(.) denotes Kullback-Leibler divergence of two distributions. The sum of two KL 

divergences above is a so-called Jensen-Shannon divergence of original data distribution P(x) 

and generated data distribution Q(z), denoted JS(P(x) | Q(x)). Therefore, we have 

(Goodfellow, et al., 2014, p. 5): 

 
Because Jensen-Shannon divergence is always nonnegative, we have (Goodfellow, et al., 

2014, p. 5): 
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The sign “=” occurs because Jensen-Shannon divergence is zero if the two distributions are 

equal, for instance, P(x) = Q(x). Therefore, l(Φ, Ψ*) has maximal value –log4. In other words, 

we have: 

 (4.8) 

Due to the existence of global optimal value l* = –log4, the convergence of GAN is asserted. 

 

5. CONCLUSIONS 

Recall that there are three main approaches for constructing deep generative model (DGM) 

such as tractable density DGM, approximate density DGM, and implicit density DGM. When 

skimming these approaches, it is easy to recognize that applied statistical problems such as 

probability distribution and parameter estimation are often mentioned but the effectiveness of 

a deep generative model is also dependent on how to structure the deep neural network (DNN) 

and how to train such network. Anyhow data generation function called generator is always 

defined by DNN in DGM. Backpropagation (BP) algorithm associated with stochastic 

gradient descent (SGD) method is focused as typical example in this research but there are 

some more effective training algorithms. Essential, training DNN generator is unsupervised 

learning task because there is no data class in DGM although generating data distribution 

(distribution of tractable data z) is often assumed to follow normal distribution whereas BP 

belongs to supervised learning algorithm. This is the reason that the two problems of 

constructing DGM are 1) how to train generator DNN g(z | Φ) and 2) how to qualify such 

training task which often relates to another optimization task or another training task so that 

the qualification task tries to attach supervised learning BP to unsupervised learning 

mechanism. For instance, PixelRNN allows output data becomes input data by recurrent 

neural network, VAE applies Kullback-Leibler divergence into forming data distribution as 

implicit data class, and GAN issues target function with expectation of Nash equilibrium. 

Essentially, these mechanisms make the exchange or transformation between supervised 

learning and unsupervised learning, which plays the role of a hinge for creating the DNN 

generator. 

One of problems issued by BP is the zero derivative problem when SGD cannot improve 

parameters after some large enough iteration because the gradient (derivative) approaches 

zero at that time. In other words, SGD may not converge even though there is a large enough 

number of iterations. Moreover, basic DGM approaches mentioned here require a continuous 

data provision for training DNN, which consumes more resources than reinforcement 

learning. 

 

APPENDICES 
 

A1. Backpropagation algorithm 

Because backpropagation (BP) algorithm is often associated with stochastic gradient descent 

(SGD) method to optimize loss function, it is necessary to describe a little bit BP and SGD, 

especially, in case of DGM where artificial neural network is deep neural network (DNN) 

with many hidden layers so that learning DNN (training DNN) is essential to deep learning. A 

neural network often has one input layer, one output layer, and hidden layers. The simplest 

neural network has one input layer and one output layer without a hidden layer. A DNN is a 

neural network often having many enough hidden layers. Each layer has a list of units called 

neurons and there are full connections of neurons between two successive layers. Feed-

forward network which is the neural network whose connections are one-way from input 

layer to hidden layers to output layer is focused here. BP is a reverse process that begins from 

output layer back to input layer. Without loss of generality, input neurons, hidden neurons, 

and output neurons are concerned rather than input layer, hidden layers, and output layers, 
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respectively because BP processes layers by processing neurons of layers. As a convention, 

let i, h, and o denote indices of input neurons, hidden neurons, and output neurons, 

respectively. Let x and y denote input variable and output variable of neurons. For instance, xi 

and yi are input and output of an input neuron and xh and yh are input and output of a hidden 

neuron whereas xo and yo are input and output of an output neuron, respectively. Because BP 

is a reverse process that begins from output layer back to input layer, output neuron is 

concerned firstly by starting its propagation rule as follows: 

 

 
Where who and θo are weights of connections between previous hidden neurons h and current 

output neurons o while θo is bias of current output neurons o. Moreover, f denotes activation 

function that squashes input into valid range, which is often sigmoid (logistic) function or 

hyperbolic tangent function. Some literature documents use letter b to denote such bias. BP 

aims to learn the parameters such as connection weights w(.)(.) and biases θ(.) from sample data. 

Note, propagation rule is cornerstone of evaluating neural network. Let vo is real value of 

output neuron o, error function ε(yo) of output neuron is half the square deviation between yo 

and vo. 

 
Note, yo is variable and vo represents sample data. Weight parameter and bias parameter are 

estimated by minimizing output error function ε(yo) according to BP. 

 

 
Minimizing output error function ε(yo) is equivalent to maximizing likelihood (PDF) of 

random variable yo. Indeed, output likelihood P(yo) is specified as follows: 

 
Where, 

 
Note, mean and variance of output likelihood P(yo) are 0 and 1, respectively. Exactly, P(yo) is 

probability density function (PDF) of the error yo–vo. By maximum likelihood estimation 

(MLE) method, maximizing P(yo) is to maximize its natural logarithm logP(yo): 

 
Because π is constant, it is obtained: 

 

 
This implies: 
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Which confirm the equivalence of error minimization and likelihood maximization. Therefore, 

BP becomes more potential because MLE can be extended with more techniques so that error 

function is defined indirectly and more flexibly via likelihood function. It is interesting that 

the minimization problem can be exchanged with the maximization problem. Shortly, the 

optimization is ultimate purpose. 

The problem now is how to minimize error function ε(yo), which is the optimization 

problem. Fortunately, stochastic gradient descent (SGD) method is applied into solving this 

optimization when square error function is Lipschitz continuous and bounded. Given target 

function has both variable and parameter where parameter is the subject of optimization, 

SGD pushes parameter candidate-point along with the same direction (for maximization) or 

the opposite direction (for minimization) of gradient of target function. There are two 

important aspects of SGD: 1) the gradient is the first-order derivative of target function with 

regard to parameter, and 2) the variable is considered as input data which is fed by stochastic 

process or random way. Moreover, candidate point considered as candidate solution or 

candidate minimizer / maximizer of optimal parameter is pushed with step length which is 

coded as learning rate γ. It is proved that SGD will be converged to the optimal solution 

(good enough minimizer / maximizer) after many enough iterations and many enough data. 

Shortly, SGD updates weight parameter who and bias parameter θo of output error function 

ε(yo) at every iteration within context of BP as follows: 

 

 
Where  and  are gradients of output error function ε(yo) with regard to 

weight parameter who and bias parameter θo, respectively: 

 

 
It is not difficult to calculate these gradients. Due to chain rule of derivative and propagation 

rule 

 
We have: 

 

 
Note, 
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And due to: 

 

 
As a result, parameter who and bias parameter θo at output neuron is updated at every iteration 

of SGD within context of BP as follows: 

 
(A1.1) 

Note, f’(xo) is the first derivative of activation function at xo and γ is learning rate (0 < γ ≤ 1). 

It is expected that weight parameter who and bias parameter θo will converge the 

aforementioned optimizers w*
ho and θ*

o. Let δo denote output error, we have: 

 
Where, 

 
BP continues to estimate weight and bias parameters of previous neurons which are hidden 

neurons. Without loss of generality, given hidden neuron h whose error ε(yh) is sum of errors 

of all output neuron o to which such hidden neuron connects. 

 
Note, yh is calculated by propagation rule as usual: 

 
Note, yj is output value of previous hidden neuron j which connects to current hidden neuron 

h. Because SGD is continuously applied into estimating weight parameters wjh and bias 

parameter θh of hidden neuron h, gradients of hidden error function ε(yh) with regard to wjh 

and θh need to be determined, respectively. According to chain rule of derivative, we have: 

 

 
Due to: 

 

 

 
Equations of gradients  and  are written: 



74 

 

 

 
It is now necessary to calculate the derivative dε(yh)/dyh of hidden error function ε(yh) with 

regard to yh. Indeed, we have: 

 
Due to: 

 
This produces: 

 
Gradients  and  are totally determined: 

 

 
Due to SGD estimation: 

 

 
Parameter wjh and bias parameter θh at output neuron is updated at every iteration of SGD 

within context of BP as follows: 

 

(A1.2) 

Let δh denote hidden error: 

 
SGD estimation equations of hidden neurons become more succinct: 

 
The reverse process of BP recurrently continues to estimate other parameters of previous 

hidden neurons, which is an interesting and effective aspect of BP. Finally, following system 

of estimation equations is the summary of association of BP and SGD, in which weight 

parameters and bias parameters of feed-forward neural network are updated at every iteration 

whenever data sample v is received. 

 

(A1.3) 
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Where output error δo and hidden error δh are calculated as follows: 

 

(A1.4) 

For easy explanation, according to the BP recurrent process, weight parameters wkj and bias 

parameter θj of previous hidden neuron j of hidden neuron h are calculated as follows: 

 
Where error δj of hidden neuron j is: 

 
The back recurrent process continues until reaching input layer (exclusive). It is easy to 

recognize that the entry point of BP is the output error δo which relates to derivative of error 

function of output neuron at sample point v. Recall that such error function can be replaced 

by likelihood function instead. Therefore, δo is the opposite of gradient of output error 

function if the error function is applied to estimation within context of minimization. 

Otherwise, δo is gradient of output likelihood function if the likelihood function is applied to 

estimation within context of maximization. The interesting result allows us to extend BP 

applications by defining error function or likelihood function at output layer without 

changing BP recurrent process. 

It is necessary to consider activation function f(x) and its derivative f’(x) which are 

evaluated at output neuron and hidden neuron as f(xo), f(xh), f’(xo), and f’(xh). For instance, if 

f(x) is sigmoid function (logistic function), we have: 

 

 
In practice, y is replaced by f(y) in order to prevent o from being out of space: 

 
It is possible to fix the derivative by 1 as f’(x) = 1 for all x for fast computation but this 

approximation is not optimal. 

 

A2. Kullback-Leibler divergence 

In information theory, entropy is the quantity that indicates uncertainty of a random variable. 

Exactly, given random variable x and its probability density function (PDF) P(x), entropy of x 

denoted H(x) is the metric which is minus expected value of natural logarithm of x given 

distribution P(x). 

 
If random variable x is discrete, its entropy becomes simpler: 

 
It is easy to recognize that entropy H(x) measures the level of uncertainty or the level of 

surprise for random variable x and such level is average level. As the opposite of probability, 

such uncertainty which measures the variation of random variable is also called information 

content, self-information, surprise, Shannon information, or information, in short: 
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It is interesting that information of x is defined based on probability of x although it is 

opposite to the probability. The larger the information of x is, the more the uncertainty of x is, 

the less the probability of x is. Entropy H(x) is the expectation of information I(x) given 

distribution P(x). 

 
In thermodynamics, entropy represents the level of chaos in movement of particles. Kullback-

Leibler (KL) divergence which is defined based on concept of entropy measures the 

difference of two distributions. For instance, given distributions P(x) and Q(x), Kullback-

Leibler divergence of P(x) given Q(x) denoted DKL(P(x) | Q(x)) measures how much the 

distribution P(x) is different from the distribution Q(x) (Wikipedia, Kullback-Leibler 

divergence, 2004). 

 
For convenience, we denote: 

 

(A2.1) 

The larger the KL divergence KL(P(x) | Q(x)) is, the more different focused distribution P(x) 

is from distribution Q(x). However, such difference does not represent distance metric 

between P(x) and Q(x) because KL divergence is not symmetric: 

 
KL divergence does not satisfy triangle inequality too (Wikipedia, Kullback-Leibler 

divergence, 2004). KL divergence is expended: 

 
Let H(x | Q(x)) denote entropy of x such that x is quantified by distribution Q(x). 

 
Where, 

 
We obtain: 

 
This implies KL divergence measures the expected value of uncertainty when focused 

distribution P(x) is replaced by distribution Q(x) for quantifying random variable x. This is 

the reason that KL divergence is also called relative entropy. KL divergence is always 

nonnegative due to: 

 
Two distributions P(x) and Q(x) are identical if KL divergence KL(P(x) | Q(x)) is zero. 

Moreover, if P(x) is 0 for all x then Q(x) must be 0 for all x. As usual, P(x) represents data 

distribution and Q(x) represents theoretical distribution so that it is possible to compare or fit 

observational model with hypothesis model (Wikipedia, Kullback-Leibler divergence, 2004). 
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While Kullback-Leibler divergence is not a metric because it satisfies neither symmetry 

nor triangle inequality, Jensen-Shannon (JS) divergence is a real metric that measures the 

distance between two distributions although JS divergence is defined based on KL divergence. 

Given the two distributions P(x) and Q(x), its JS divergence is the following average KL 

divergence (Wikipedia, Jensen-Shannon divergence, 2006): 

 
Where M(x) is mixture distribution or mean distribution of P(x) and Q(x): 

 
Note, JS divergence satisfies both symmetry and triangle inequality. 

 

 
For convenience, we denote: 

 
(A2.2) 

JS divergence is bounded in interval [0, 1] such that 0 ≤ JS(P(x) | Q(x)) ≤ 1. Square root of JS 

divergence is called JS distance of two distributions. 
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